• 当天更新视频:5部 视频总数量:78283
您现在所在的位置:首页  »  电脑  »  网络编程  »  Udacity课程5.0 GPU优化程序

Udacity课程5.0 GPU优化程序截图

Udacity课程5.0 GPU优化程序 全集

评分:
视频类型:网络编程
人气:加载中...次点播
更新时间:2015-06-29 22:46

Udacity课程5.0 GPU优化程序详情

Udacity课程5.0 GPU优化程序内容简介:

    这部关于GPU(图形处理器)的视频教程是Udacity公开课最新推出的一部线上课程,有两个讲师。其中,John Ownes是UC Davis大学电子与计算机工程学院的副教授,在学校带领一群优秀的研究生探索图形处理器(GPU)计算前沿。另一位讲师叫Dave Luebke,是NVIDA的高级研究主管,在NVIDIA研究三维图。他与John Ownes及另外一些人一起致力于扩展GPU的应用范围已经有很多年了。
    本期课程是第四单元5.0——GPU优化程序。由Dave Luebke老师讲解。现在我们想要使用一个并行平台,像GPU的全部原因就是更快地解决问题。反过来我们可能想要更愉地解决问题的原因,可能只是因为我们想更快地解决问题;或更多的时候,是因为我们想要解决更大的问题,更多的问题。所以好消息是常常是这种情况,问题的第一次初始移植,获得加速,假设你以一个并行问题开始。以老师的经验,这实际上是让许多GPU程序员着迷的时刻。你懂的,哪怕是周末回家,他们也尝试把现在CPU代码的某些部分移植到GPU,然后他们得到不错的加速,5倍或8倍的加速。这就是让他们着迷的东西,也使他们意识到他们可以多花一些精力于此,以获得更大的加速。
    图形处理器(英语:Graphics Processing Unit,缩写:GPU),又称显示核心、视觉处理器、显示芯片,是一种专门在个人电脑、工作站、游戏机和一些移动设备(如平板电脑、智能手机等)上图像运算工作的微处理器。用途是将计算机系统所需要的显示信息进行转换驱动,并向显示器提供行扫描信号,控制显示器的正确显示,是连接显示器和个人电脑主板的重要元件,也是“人机对话”的重要设备之一。显卡作为电脑主机里的一个重要组成部分,承担输出显示图形的任务,对于从事专业图形设计的人来说显卡非常重要。
    GPU的结构决定了它的数学运算能力巨大,但 分支控制性能低下。它要求在每个计算单元中执行完全相同的操作,因此,只适合执行可以大量并行化的运算。另外,目前GPU硬件是专为单精度浮点运算设计的,执行双精度运算性能会降低一个数量级,对运算精度要求高的场合暂时还不宜使用GPU。所以,GPU目前还不能取代CPU。 因此,GPU大规模并行通用计算的理想运用模式是:用CPU控制主要的流程,将问题分解,把需要大量并行处理的计算密集型任务放到GPU上处理。另外,研究传统问题的新算法,使之适于并行计算也是一大发展方向。

Udacity课程5.0 GPU优化程序由第一视频教程网精心收集并免费提供在线观看下载,如果您觉得此视频教程对您有帮助,请把本视频链接发给您的亲朋好友,让更多的人能得到帮助!

评论视频Udacity课程5.0 GPU优化程序